Electricity Balancing in High Renewable Scenarios

EVOLVED ENERGY RESEARCH

Indiana IRP Contemporary Issues Technical Conference 2019 Ryan Jones, Co-founder Ryan.Jones@evolved.energy

About Evolved Energy Research

- Energy consulting firm focused on addressing key energy sector challenges posed by energy system transformation
- Lead developers of EnergyPATHWAYS and RIO, two models used to investigate pathways to deep decarbonization
- We advise clients on issues of policy implementation and targetsetting, infrastructure investments, R&D strategy, technology competitiveness, and asset valuation

Three pillars of a low carbon energy system transition

United States

2050 U.S. Benchmarks

- 3x increase in the share of energy from electricity or electrically derived fuels
- 90% decrease in the emissions intensity of electricity generation
- 3x drop in energy use per unit GDP

EVOLVED ENERGY RESEARCH

Options for building a low-carbon grid

- Three opportunities for decarbonizing the electricity system
 - 1. Fossil with carbon capture and sequestration theoretically operates much like today's grid, though with a bit less generator flexibility
 - 2. Nuclear inflexible, but France demonstrates that excellent service can be provided with a predominantly nuclear electricity supply
 - 3. Renewables (wind & solar) different characteristics of wind and solar present unique challenges for balancing the electricity system and significant research has gone into investigating these dynamics

Wind cost < gas < coal

In areas with good resources, renewables are the cheapest new source of energy

- Additional factors leading to growth of wind:
 - Is easier to permit than new thermal
 - Can be built in a range of sizes
 - Gives stable PPA prices
 - Offers hedging against policy unknowns

Figure Source:

https://emp.lbl.gov/sites/default/files/2017 wind_technologies_market_report.pdf

Note: The 10th/90th percentile range narrows considerably in later years as the PPA sample dwindles

Sources: Berkeley Lab, Energy Information Administration's Annual Energy Outlook 2018 (AE018)

EVOLVED ENERGY RESEARCH

Rapid growth of renewables possible

Carbon legislation and favorable economics could drive unprecedented growth

Historical Build (EIA)

other petroleum

> solar wind

nuclear natural gas

> coal hydro

> > 1950

1970

1960

1980

gigawatts

60

50

40

30

20

10

1930 and

before

1940

Optimized Electricity Build reaching an 80% Reduction in Energy CO₂ by 2050

www.evolved.energy page 6

2000

1990

How do renewables present unique challenges for balancing?

- Renewables have certain characteristics that make them difficult to manage in the context of today's electricity system
 - Variability output is not controllable and can change rapidly
 - **Uncertainty** future output can be difficult to predict
 - New locations deployment in locations not anticipated when the grid was built
 - Inverters vs. synchronous motors technical character of inverters are different

Electricity balancing has two components

1. Ensuring electricity supply matches demand through time

2. Ensuring power quality (voltage, frequency, reactive power)

https://www.allaboutcircuits.com/textbook/alternating-current/chpt-13/synchronous-motors/

Time-Scale of Balancing Challenges (seconds)

Defining energy imbalance

Eastern interconnection using load and renewable profiles from January, 2011

EVOLVED ENERGY RESEARC

Average energy imbalance by month-hour

Eastern interconnection using load and renewable profiles from 2011

EVOLVEI ENERGY RESEARC

Seasonal energy storage challenge in 100% renewables system

Eastern interconnection using load and renewable profiles from 2011

EVOLVED ENERGY RESEARCH

Option 1: Use storage to shift the grey to the orange

Eastern interconnection using load and renewable profiles from January, 2011

EVOLVED ENERGY RESEARCE

Option 2: Use flexible load to shift the orange to the grey

Eastern interconnection using load and renewable profiles from January, 2011

EVOLVED ENERGY RESEARCH

Option 3: Use other generation to fill the orange

Eastern interconnection using load and renewable profiles from January, 2011

EVOLVED ENERGY RESEARC

Option 4: Build load into the grey and build more renewables

Eastern interconnection using load and renewable profiles from January, 2011

EVOLVED ENERGY RESEARCH

Option 5: Change the mix between renewables

Eastern interconnection using load and renewable profiles from January, 2011

EVOLVED ENERGY RESEARCH

... but this can create more imbalance in other months 🕾

Eastern interconnection using load and renewable profiles from 2011

EVOLVED ENERGY RESEARCH

Capacity needs to cover all energy imbalance

Eastern interconnection using load and renewable profiles from 2011

EVOLVED ENERGY RESEARCI

Load duration curves

Eastern interconnection using load and renewable profiles from 2011

EVOLVED ENERGY RESEARCH

page

www.evolved.energy

Seasonal energy imbalance

 Increasing the penetration of wind & solar beyond 60% in temperate climates results in seasonal energy imbalances that become the dominate challenge for achieving deep decarbonization in electricity

U.S. Eastern Interconnect 2015 Load with simulated 40% Solar & 60% Onshore Wind by Energy

How would the state-of-charge of a perfect storage device change through the year?

Prior chart shifted upward by the maximum cumulative deficit

EVOLVED ENERGY RESEARCH

Operation of the 250th TWh of storage

One charge and one discharge cycle per year illustrated in the orange and green bars

EVOLVED ENERGY RESEARCH

Electricity balancing simulation in a low carbon grid (2050 ERCOT)

- Managing periods of undergeneration from renewables is primarily accomplished with thermal generation operating infrequently
- Overgeneration is mitigated with the flexible operations of electric fuels, direct air capture facilities, increased utilization of transmission, and the operation of battery storage

EVOLVED ENERGY RESEARCH

Key takeaways

- Grid balancing issues are diverse, complex, and depend on the particulars of any system
- Integration of high penetrations of renewables is largely an institutional and economic problem.
 - While the technical challenges are real and complex, renewable electricity penetrations have no ceiling because of engineering first-principals
- Storage, transmission expansion, flexible load, and renewable curtailment are each best for solving certain types of balancing problems
 - Using storage alone is prohibitively expensive
 - Using transmission alone won't solve interconnection level problems
 - Using flexible load alone may degrade service
 - Some renewable curtailment is rational but using it alone is inefficient

THANK YOU

2443 Fillmore Street, No. 380-5034 San Francisco, CA, 94115

EVOLVED ENERGY RESEARCH